

Impact of Preparatory Videos on Laboratory Experience in a Large-Enrollment Introductory Physics for the Life Sciences Course.

MATT STEFFLER Martin Williams, Duncan Brain, Braeden Skene JULY 26th, 2017

AAPT Summer Meeting 2017

Background

- University of Guelph
 - About 25,000 students, with about half of those in the sciences

First year IPLS courses

- Mandatory full Physics credits for all science majors
- All IPLS courses combined serve ~2500 students per year
- PHYS*1080 Physics for Life Sciences
 - Half credit course that pairs with one other IPLS course to provide the full Physics credit
 - ~800 students each semester

Background – PHYS*1080 labs

Labs for PHYS*1080 are:

- Self Directed students sign up for times of their own choosing.
- Packed sessions available for signup run Monday Friday, morning – evening, all semester.
- Lightly TA'd one TA at any time in a lab room that has 12 stations and as many as 36 students per session.
- Not Marked completing a lab (and having a TA sign off) gives the student the ability to write a corresponding quiz.

Motivation (Pedagogical)

Figure 1 Student responses to the statement "I can complete a lab without understanding the equations and the physics" (492 respondents)

Lab preparation is not prioritized

- Students don't believe that preparation is key to success in a lab setting.
- Lab preparation mostly comes from reading a manual
- Preparation is critical for learning in labs¹
- For students, preparation = reading the lab manual over, if at all.
 - Not ideal, if our goal is to have students arrive ready to learn form these labs.

Motivation (Departmental)

- Enrollment is growing.
- Lab space and departmental budgets are not.
- We looked for a way to give all students the full laboratory experience in a way that
 - preserves the creativity and spirit of inquiry;
 - does not interfere with the self-guided study → lab
 → quiz system;
 - encourages students to complete and understand the labs in a more timely fashion;
 - doesn't add frustration to the students' experience of physics labs.

Proposal – the Half Flip

Can't do a full flip

- Courses are designed for independent learning
- Labs are gateways to the quiz system

Try a half flip? Keep the lab system, the manual, and the design the same, but augment in a way that could increase engagement, and maybe even learning?

Before-and-After: Fall 2016 and Winter 2017 semesters

The Half Flip

- Preparatory videos developed for all PHYS*1080 labs
 - 1. <u>Motivation:</u> a discussion of why the lab is being performed and how it is connected to Biology.
 - 2. <u>Method:</u> a step-by-step walkthrough of all portions of the lab.
 - <u>Analysis:</u> an introduction to all equations used in the data analysis for the lab.

Results - Uptake

 All data – video views and selfreported student preparatory habits – suggested that the videos were viewed by no more than half of the students in PHYS*1080

Figure 3 Student responses to statement "I carefully reviewed the prep-lab videos" for all four laboratory exercises during the Winter'17 semester. 800 700 600 500 500 200 100

100							
0	Lab 10 - Forces and Torques	Lab 12 - Elasticity	Lab 13 - Density and Surface Tension	Lab 14 - Viscosity			
Strongly Disagree	36	39	35	33			
🗖 Disagree	62	56	53	46			
🛙 Neutral	141	119	119	118			
🖬 Agree	279	197	193	175			
Strongly Agree	186	146	138	159			

Figure 4
Comparison of student responses to survey question "I carefully watched the prep-lab videos" with videos views from Courselink.

	Students respond watched the	ed "Yes" to having prelab videos	Video views from Courselink				
	Lower Bound ¹ Upper Bound ² orques 465 606		Introduction	Method Part 1	Method Part 2 419	Problem Analysis 375	
Lab 10 - Forces and Torques			518	473			
Lab 12 - Elasticity	343	462	406	392	356	292	
Lab 13 - Density and Surface Tension	331	450	393	378	3	383	
Lab 14 - Viscosity	334	452	369	353	333	282	

¹ Sum of "Strongly Agree" and "Agree

²Sum of "Strongly Agree", "Agree" and "Neutral"

³ Lab 13 did not have a second Method video

M. Steffler, University of Guelph

Results – Time to complete labs

- No consistent reduction in the time students took to complete the labs with the videos in place
 - Some exercises done more quickly, some took more time.

	Figure	6	
Comparison of mean timing values	for Fall'16 ar	nd Winter'1	7 semesters for all lab exercises.
Significance:	*** p < 0.001	**p<0.01	* p < 0.05

V.		0	Contraction and the	1.000	a aroutersee to	61 (4) White Birds Bir	N-2048004
			10.000			Standard Deviation	Difference of
Experiment	Description	Semester	N	n	Mean (min)	(min)	means (min)
10	Forces and Torques - main station	Fall	357	278	26.43	10.50	
10	Forces and Torques - main station	Winter	352	259	34.62	17.40	8.19 ***
10	Forces and Torques - scales	Fall	163	135	15.46	6.02	
10	Forces and Torques - scales	Winter	296	202	19.70	8.71	4.23 ***
12	Elasticity - main station	Fall	276	216	41.92	29.06	
12	Elasticity - main station	Winter	249	160	49.41	31.50	7.48 **
12	Elasticity - Station B1	Fall	140	114	20.19	10.60	
12	Elasticity - Station B1	Winter	83	66	35.50	28.80	15.31 ***
12	Elasticity - Station B2	Fall	92	74	18.65	10.72	
12	Elasticity - Station B2	Winter	67	52	16.31	7.79	-2.33
13	Density and Surface Tension	Fall	271	203	44.84	29.66	
13	Density and Surface Tension	Winter	161	129	53.98	31.87	9.14 **
14	Viscosity	Fall	247	195	75.92	22.18	
14	Viscosity	Winter	317	261	68.57	30.45	-7.34 **

Results – Student feedback

- A great deal of student feedback and opinions on lab manageability, insight gained, and overall experience.
 - Some evidence that the insight gained has increased – students may be taking more time because they are more engaged and thinking more about the labs.

Figure 7

Student responses to statement "Although there was a significant amount of material needed to successfully complete the lab (equipment, procedure, physics concepts/equations). Overall, I found the requirements for this lab to be manageable" for all four labs in both semesters.

Figure 13 Significance of difference in responses between all four labs in the Fall'16 semester to the statement "I gained usefiul insight on the physics topic presented in this lab".	Lab 10 - Forces and Torques	Lab 12 - Elasticity	Lab 13- Density and Surface Tension
Lab 12 - Elasticity	Yes *		
Lab 13- Density and Surface Tension	No	Yes **	
Lab 14 - Viscosity	No	Yes ***	No

Significance determined through Kruskal-Wallis test for equality of populations, followed by Dunn's pairwise comparison of individual lab responses, using Bonferroni's correction for > 2 treatments, in Stata.

M. Steffler, University of Guelph

Conclusions

- More work needed on engagement and uptake of the videos – a way to encourage students to use the preparatory resources they have available.
- Partial success (lab-specific) in increasing student knowledge about labs:
 - As measured by time spent in the lab room, improvement in some labs and not in others.
 - As measured by student comments, improvement in other labs but not in some.

Next steps

- Keep the videos in place; work on ways to encourage students to watch them. Weave the video system more strongly into the fabric of the course.
- Gather another data set for both the Fall and Winter cohort for PHYS*1080.

Thanks!

1 The students' attitude and cognition change to a physics laboratory. A H Johnstone, A Watt and T U Zaman. Physics Education, Volume 33, Number 1 (1998)